Causal inference in outcome-dependent two-phase sampling designs

نویسندگان

  • Weiwei Wang
  • Daniel Scharfstein
  • Zhiqiang Tan
  • Ellen J. MacKenzie
  • E. J. MacKenzie
چکیده

We consider estimation of the causal effect of a treatment on an outcome from observational data collected in two phases. In the first phase, a simple random sample of individuals is drawn from a population. On these individuals, information is obtained on treatment, outcome and a few low dimensional covariates. These individuals are then stratified according to these factors. In the second phase, a random subsample of individuals is drawn from each stratum, with known stratum-specific selection probabilities. On these individuals, a rich set of covariates is collected. In this setting, we introduce five estimators: simple inverse weighted; simple doubly robust; enriched inverse weighted; enriched doubly robust; locally efficient. We evaluate the finite sample performance of these estimators in a simulation study. We also use our methodology to estimate the causal effect of trauma care on in-hospital mortality by using data from the National Study of Cost and Outcomes of Trauma.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Semiparametric Inference for Data with a Continuous Outcome from a Two-Phase Probability Dependent Sampling Scheme.

Multi-phased designs and biased sampling designs are two of the well recognized approaches to enhance study efficiency. In this paper, we propose a new and cost-effective sampling design, the two-phase probability dependent sampling design (PDS), for studies with a continuous outcome. This design will enable investigators to make efficient use of resources by targeting more informative subjects...

متن کامل

Large Sample Theory for Semiparametric Regression Models with Two-Phase, Outcome Dependent Sampling

Outcome-dependent, two-phase sampling designs can dramatically reduce the costs of observational studies by judicious selection of the most informative subjects for purposes of detailed covariate measurement. Here we derive asymptotic information bounds and the form of the efficient score and influence functions for the semiparametric regression models studied by Lawless, Kalbfleisch, and Wild ...

متن کامل

Causal Inference for Case - Control Studies

Causal Inference for Case-Control Studies by Sherri Rose Doctor of Philosophy in Biostatistics University of California, Berkeley Professor Mark van der Laan, Chair Case-control study designs are frequently used in public health and medical research to assess potential risk factors for disease. These study designs are particularly attractive to investigators researching rare diseases, as they a...

متن کامل

Large Sample Theory for Semiparametric Regression Models with Two-phase, Outcome Dependent Sampling By

Outcome-dependent, two-phase sampling designs can dramatically reduce the costs of observational studies by judicious selection of the most informative subjects for purposes of detailed covariate measurement. Here we derive asymptotic information bounds and the form of the efficient score and influence functions for the semiparametric regression models studied by Lawless, Kalbfleisch and Wild (...

متن کامل

Two‐phase designs for joint quantitative‐trait‐dependent and genotype‐dependent sampling in post‐GWAS regional sequencing

We evaluate two-phase designs to follow-up findings from genome-wide association study (GWAS) when the cost of regional sequencing in the entire cohort is prohibitive. We develop novel expectation-maximization-based inference under a semiparametric maximum likelihood formulation tailored for post-GWAS inference. A GWAS-SNP (where SNP is single nucleotide polymorphism) serves as a surrogate cova...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009